
Issues in Developing Object-Oriented Database Systems
for Real-Time Applications'

Juhnyoung Lee and Sang H . Son

Department of Computer Science
University of Virginia

Charlottesville, VA 22903

Abstract
Database systems for real-time applications must satisfy
timing constraints associated with transactions, in addition
to maintaining data consistency. Recently, interests in
object-oriented databases have been growing for non-
traditional applications of database systems, and several
real-time applications are being developed using an object-
oriented paradigm. The object-oriented approach seems
promising for developing complex real-time database
applications. However, it is not clear whether object-
oriented database systems would be superior than
relational database systems for supporting real-time
applications. In this paper, we address issues that must be
investigated in order to design and develop an object-
oriented database system for real-time applications. Also,
we present a model that integrates features for scheduling
real-time transactions with the traditional object-oriented
database model.

1. Introduction

A real-time database system (RTDBS) is a
transaction processing system where transactions have
explicit timing constraints. Typically, a timing constraint is
expressed in the form of a deadline, a certain time in the
future by which a transaction needs to be completed. A
deadline is said to be hard if it cannot be missed or else the
result is useless. If a deadline can be missed, it is a soft
deadline. With soft deadlines, the usefulness of a result may
decrease after the deadline is missed. In RTDBS, the
correctness of transaction processing depends not only on
maintaining consistency constraints and producing correct
results, but also on the time at which a transaction is
completed. Transactions must be scheduled and processed
in such a way that they can be completed before their

1. This work was supported in part by ONR. IBM and CIT.
2. Currently visiting Department of Computer Science at University of

Virginia.

0-8186-6375-8/94 $04.00 0 1994 IEEE

Myung-Joon Lee2

Department of Computer Science
University of Ulsan

Ulsan, Kyung-Nam 680-749, Korea

corresponding deadlines expire. Real-time database
systems are being used for a variety of applications such as
process control, mission critical applications in command
and control systems and radar systems, computer integrated
manufacturing systems, and air traffic control systems,
among others.

Conventional data models and databases are not
adequate for time-critical applications, since they are not
designed to provide features required to support real-time
transactions. They are designed to provide good average
performance, while possibly yielding unacceptable worst-
case response times. Very few of them allow users to
specify or ensure timing constraints. During the last few
years, several research and development efforts on RTDBSs
have been reported [19,21,22,26]. However, almost all of
them are based on relational data model. Although object-
oriented database systems have received a lot of attention
for last several years, not much work has been done in
investigating how object-oriented model can benefit
database systems for real-time applications. Only recently,
object-oriented data models have attracted the attention of
researchers in RTDBSs [5,6, 13, 14, 151.

2. Preliminary Questions

There are several questions to be answered, before
object-oriented database can be considered for real-time
applications. First, do we need object-oriented data models
to satisfy real-time database requirements? Related
questions are: Are the features of object-oriented data
models helpfuhecessary to satisfy timing constraints? Or
do they interfere with timely execution of transactions?
Why do we need to consider object-oriented models for
real-time database systems? In general, using object-
oriented data models for an RTDBS does not directly help
the system to improve timeliness or to guarantee
deterministic behavior of transaction execution, because
none of the object-oriented data model's features provides
active pursuit of timely/deterministic processing of
transactions. In addition, poor performance of current

136

I-

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
1994 2. REPORT TYPE

3. DATES COVERED
 00-00-1994 to 00-00-1994

4. TITLE AND SUBTITLE
Issues in Developing Object-Oriented Database Systems for Real-Time
Applications

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Virginia,Department of Computer Science,151 Engineer’s
Way,Cahrlottesville,VA,22094-4740

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

5

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

object-oriented database systems partly due to the lack of
efficient implementation techniques will have a negative
impact on satisfying timing constraints. Two major benefits
of object-oriented data models are (1) better support of
advanced data-intensive applications by providing the
capabilities for modeling, storing and manipulating complex
objects, and (2) better software engineering in building
large and complex application systems providing support
for encapsulated objects. The need for supporting real-time
database requirements with object-oriented data models
may arise because real-time applications may require
modeling complex encapsulated objects.

Is there any inherent problem in object-oriented
data models in satisfying timing constraints of real-time
applications? It is obvious that the basic features of object-
oriented data models (objects, attributes, methods,
messages, classes, class hierarchy, and inheritance) do not
directly help timely processing of transactions. It is also
true, however, that none of them particularly interferes with
active pursuit of timely processing of transactions, except
for the potential lack of efficient implementation
techniques. Thus, issues in supporting real-time
requirements with an object-oriented data model lie in
extending the object-oriented data model to include
specification of timing constraints on objects (more
specifically on attributes/methods), and to actively pursue
timely processing of transactions, rather than in combating
any incompatibility between object-oriented data models
and real-time requirements.

3. An Extended Object-Oriented Database Model
In this section, we first describe the traditional

model of object-oriented databases [3, 81. Since the notion
of nesting is natural in object-oriented databases [l , 8, 201,
the model allows objects to include methods that are not
necessarily atomic and may invoke other methods. Then, we
briefly discuss features required for scheduling transactions
with real-time requirements, and extend the model of
object-oriented databases to include policies for scheduling
real-time transactions.

An object-oriented database is a collection of
classes and instances of these classes. Both classes and
instances are referred to as objects. A class defines a set of
attributes for its instances and procedures through which
instances can be manipulated. The procedures associated
with a class are referred to as methods, and a method may
invoke other methods on other objects in the database. In
this model, we allow inheritance of properties (attributes
and methods) between classes, i.e., the class is structured as
a hierarchy. All subclasses of a class inherit all properties
defined for the class and have additional properties local to
the subclass.

Users of an object-oriented database access the
instance objects by executing methods. Since multiple users
often may need to access several classes and instances, the
traditional transaction model for database systems can be
used to ensure atomicity of user interactions. Users access
the database by executing transactions, where a transaction
is a partially ordered set of operations on class and instance
objects. We use commutativity as the basis for determining
whether a particular operation invocation can be allowed to
execute concurrently with those in progress [24]. Two
operations commute if the order in which they execute does
not affect the results of the operations, i.e., results returned
by the operation as well as the resulting state of the objects
accessed. Two operations in different transactions conflict
with each other if they do not commute.

To include nested transactions in this object model,
we assume that a method execution is a transaction which
may invoke atomic operations or invoke other methods on
other objects. Namely, an operation in a transaction may be
an atomic operation or another transaction, and now the
transaction imposes a tree structure. Hadzilacos and
Hadzilacos [8] established an analogue to the classical
serializability theorem to prove the correctness of nested
transaction execution in object-oriented databases. As in the
classical serializability theorem, the correctness of a history
H over a set of nested transactions can be determined by
constructing the serialization graph of H denoted as SG(H).
SG(H) is a directed graph whose nodes correspond to the
transactions in H and whose edges capture orderings of
transactions that must be obeyed by an equivalent serial
history. In [8], it was shown that if SG(H) is acyclic then H
is serializable on the basis of view serializability. To
synchronize the concurrent execution of nested
transactions, a concurrency control protocol, namely nested
two-phase locking (N2PL) has been proposed [171. In [8],
the protocol has been modified to synchronize nested
transactions in object-oriented databases, and its correctness
was argued by using the notion of serialization graphs for
nested transactions. We use this protocol as the basic
synchronization mechanism for transaction execution in
object-oriented databases.

In order for an object-oriented database to support
real-time applications, we need to integrate features for
scheduling real-time transactions with the conventional
object-oriented database model. There are four major
policies for scheduling transactions in real-time
requirements: (1) priority assignment, i.e., a policy for
assigning priorities to transactions, (2) eligibility test, i.e., a
policy to determine which transactions are eligible for
service, (3) concurrency control, i.e., a basic
synchronization mechanism and (4) conflict-resolution, i.e.,
a policy for resolving conflicts between two (or more)
transactions that access the same data object. Each

137

scheduling policy should work cooperatively to maximize
the number of transactions that meet their deadlines.

Transaction scheduling in an RTDBS can be
studied from several different perspectives. This largely
depends on how the system is specified in terms of data
consistency requirements and timing constraints. In this
study, we assume that data consistency is defined by the
correctness notion of serializability (i.e., a relaxation of
serializability is not considered for improving timeliness.),
and that the timing constraints associated with transactions
are finn deadlines (i.e., transactions which miss their
deadlines are useless and need to be discarded from the
system.). In addition, we assume that transactions arrive
sporadically with unpredictable arrival times, and that the
data and resource requirements of each transaction is
unknown to concurrency control beforehand.

Our model of an object-oriented database for
scheduling real-time transactions is an extension of the
traditional the object-oriented database model to include the
four features for scheduling real-time transactions.
Considering the assumptions we made regarding real-time
requirements for transactions, we choose to use the
following strategies for each of the four scheduling policies.
First, to assign priorities to transactions, we use the Earliest
Deadline First (EDF) algorithm. Since the real-time
scheduling theory ensures that the EDF algorithm, which
assigns the highest priority to the transaction with the
earliest deadline, is optimal for dynamic priority assignment
[12], EDF is a plausible choice for the given transaction
model.

Second, to maintain data consistency, we employ
the nested two-phase locking protocol. As mentioned in the
previous section, the correctness of the protocol has been
proven for the execution of nested transactions in object-
oriented databases.

Third, for conflict resolution, we employ the high
priorigi and wait promote [2] schemes to be incorporated
into the basic concurrency control mechanism. i.e., N2PL.
We also consider a conditional conflict resolution scheme
discussed in [9], which switches between the two schemes
using {he information of the lock holding transaction’s
current state.

Finally, we abort transactions that have missed their
deadlines by using eligibility test. Due to the firm deadline
assumption, the aborted transactions are discarded from the
system. One salient point about the eligibility test used i n
this model is that it can screen out transactions that not only
have missed but also are about to miss their deadlines. To
decide for the eligibility of transactions, we use the niinimal
execution times of methods defined on objects. The minimal
execution times of methods may be relatively easy to
compute by empirically measuring their running times

under no contention for objects among transactions. Note
that the nested structure of transaction execution helps the
computation and use of the minimal execution times of
component methods in a nested transaction. The details of
this extended model of object-oriented databases for
scheduling real-time transactions and related concurrency
control protocols are given in [13].

4. Concurrency Control Issues
In this section, first we consider the difficulties in

synchronizing concurrent execution of transactions in
object-oriented databases and discuss research directions to
enhance the performance of concurrency control in object-
oriented databases. Then we discuss a simple object-
oriented database system model for the development of a
complete object-oriented database for real-time
applications.

Object-oriented databases generalize the traditional
database model in several ways. First, nested executions of
transactions on objects are natural since a method may
invoke another method on some other objects. Second,
instead of simple read and write operations on database
objects, object-oriented databases permit arbitrary
operations on objects. Finally, inheritance in object-
oriented databases allows class hierarchies. These
properties often make the problem of ensuring data
consistency in object-oriented databases more difficult,
because objects of arbitrary complexity become the unit of
locking (and thus less concurrency in transaction execution
is resulted), and sometimes concurrency control requires to
lock not only the object accessed by a transaction, but also
several other objects not directly accessed by the
transaction. Specifically, due to inheritance, (1) while a
transaction accesses instances of a class, another transaction
should not able to modify the definition of any of the super
classes of the class, and (2) while a transaction is evaluating
a query, a set of class sub-hierarchies must not be modified
by a conflicting transaction [I I] .

In order to overcome the inefficiency in ensuring
data consistency in object-oriented databases, an extensive
study on improving concurrency in transaction execution in
objected-oriented databases has been done. Three major
approaches are: (1) exploiting the structure of complex
objects for enhanced concurrency or reduced overhead, (2)
exploiting the semantics of operations on encapsulated
objects to enhance concurrency, and (3) automating the
process of extracting possible concurrency from the
specification of objects.

Examples of approach (1) include the concurrency
control mechanisms of Orion [7] and 0, systems [4]. Orion
uses locking on three orthogonal types of hierarchy:
granularity locking (to minimize the number of locks to be

138

set), class-lattice locking (to handle class hierarchy), and
composite object locking (to handle object clusters) [7]. The
eight lock modes used in Orion only consider read and write
operations, and require a complex lock compatibility table
without considering operation semantics. Approach (2) is
related to work on concurrency control for abstract data
types (ADTs), and the use of fine and ad hoc commutativity
relation of operations in such ADTs as sets, maps, stacks,
and counters [lo, 23, 241. Examples of previous work
applying this approach for concurrency control in object-
oriented databases include [1 , 18, 201. Finally, an example
of approach (3) can be found in [16]. The degree of
concurrency that can be extracted from this static analysis of
operation specification at the stage of compilers seems
limited.

Difficulties in managing transactions caused by
objects of arbitrary complexity and their hierarchical
relationship also make the implementation of an object-
oriented database system complicated, and have an adverse
impact on its capability to support real-time applications. In
order for an object-oriented database system to efficiently
support real-time applications, the system needs to be
carefully designed to mitigate the complexity in transaction
management. Now we describe a simple object-oriented
database system model that is designed taking this
consideration into account.

Two key concepts of this model are atomic objects
and class manager. Atomic objects are basic entities for
ensuring atomicity of transactions in this model, and the
class manager is the major vehicle that lessens the
complexity involved in transaction management in the
object-oriented database system. The notion of atomic
objects was studied in a number of papers, including [IO,
23, 24, 251, and was first used in the context of real-time
object-oriented databases in [5]. Atomic objects are ones
that provide appropriate synchronization and recovery.
Encapsulating the synchronization and recovery needed to
support atomicity in the implementations of the shared
objects is feasible because methods defined in an object
provide the only means to access the object’s data, and data
contention can occur only among method invocations
within the object. With atomic objects, we can enhance
modularity; in addition, we can increase concurrency
among transactions by using information about the
specifications of the shared objects.

For an efficient support of transaction management
in an object-oriented database system, we believe that the
task of managing class hierarchies and method
commutativities should be performed by a single module.
Thus, our model uses a class manager to maintain the
definition of classes, and the information of class
hierarchies due to inheritance arid composition. The class
manager uses this information to maintain commutativity

relation among methods of each class, and provides
concurrency control with its information when requested.
Note that in this model, the commutativity of method
invocations is statically determined and maintained by the
class manager, while concurrency control which uses the
information of method commutativity, is dynamically
performed by each atomic object.

In [5, 61, DiPippo and Wolfe proposed a
comprehensive model for real-time object-oriented
databases and flexible approaches to processing real-time
transactions in such a model. To determine compatibility
relation of methods, their approach considers not only a
broad domain of semantic information affecting logical
consistency, but also temporal consistency constraints. In
addition, the approach allows a wide range of correctness
criteria for logical consistency that relax serializability. Our
work (described in this paper and [131) is different from
theirs in a number of aspects. First, we use the correctness
notion of serializability to define data consistency
requirements, but do not consider any relaxation of
serializability for improving timeliness. The work in [5, 61
proposed a concurrency control technique that allows
imprecision to accumulate in data values and in transactions
as a result of trading off logical consistency and temporal
consistency.

Second, in our system, commutativity of methods
(and method invocations in case of the range of parameter
values being discrete) is determined a priori at compile-
time, and run-time checking of commutativity is as efficient
as for compatibility. We believe that the simple and efficient
run-time checking is beneficial to support real-time
transactions, because that may increase predictability in
transaction execution. One drawback of this scheme is that
concurrency level may be relatively limited, because it does
not exploit dynamic information about objects. In [5, 61,
granting of locks is controlled by run-time evaluation of a
set of preconditions and compatibility functions defined on
every ordered pair of methods. This approach seems to
increase concurrency level among transactions at the cost of
run-time overhead.

Finally, i n [131 we proposed a synchronization
mechanism for scheduling real-time transactions in an
object-oriented database, which uses the minimal execution
time estimates of methods to decide eligibility of
transactions for service. Note that our system model helps to
accurately estimate the minimal execution times due to its
run-time efficiency. The minimal execution times of
methods are useful in scheduling real-time transactions in
an object-oriented database, while in general the worst
execution time estimates may not be helpful due to large
variance of transaction execution time in typical database
systems.

139

5. Conclusion
In summary, object-oriented data models d o not

directly help the database systems to improve timeliness or
to guarantee deterministic behavior of real-time
applications. They do not provide features to support active
pursuit of timely and deterministic processing of
transactions. However, since object-oriented database
models allow better support for managing complex objects
and encapsulation, real-time systems that need to handle
large and complex applications would require an object-
oriented approach. Considering the implications of inherent
complexity of concurrency control in object-oriented
paradigms, we need to start from a simple model that can be
easily extended to support real-time transactions and
temporal constraints of real-time data. The model outlined
in this paper can be one candidate for the development of a
complete object-oriented database for real-time
applications.

References

I 1 1

I21

[31

141

151

I61

I71

I81

r91

Agrawal, D., and A. E. Abbadi, “A Non-Restrictive
Concurrency Control for Object Oriented Databases,”
Proc. of the 3rd Int. Con$ on Extending Data Base
Technology, Vienna, Austria, March 1992.

Abbott, R. and H. Garcia-Molina, “Scheduling Real-Time
Transactions: A Performance Evaluation,” ACM Trans. on
Database Systems, 17(3):513-560, Sept. 1992.

Banerjee, J., W. Kim, H. J . Kim, and H. F. Korth,
“Semantics and Implementation of Schema Evolution in
Object-Oriented Databases,” ACM SIGMOD International
Conference on Management of Data, May 1987.

Cart, M., and J. Ferrie. “Integrating Concurrency Control
into an Object-Oriented Database System,” Proc. of the Int.
Con$ on Extending Data Base Technology, 1990.

DiPippo, L. B. C., and V. F. Wolfe, “Object-Based
Semantic Real-Time Concurrency Control,” Proc. of the
14th IEEE Real-Time System Symposium, Dec. 1993.

DiPippo, L. B. C., and V. F. Wolfe. “Distributed Object-
Based Semantic Real-Time Concurrency Control with
bounded imprecision,” Technical Report, TR93-227,
Department of Computer Science & Statistics, University
of Rhode Island, April 1994.

Garza, J. F., and W. Kim, “Transaction Management in an
Object-Oriented Database System,” ACM SIGMOD
International Conference on Management of Data, June
1988.

Hadzilacos, T. and V. Hadzilacos, “Transaction
Synchronization in Object Bases,” Journal of Computer
and System Sciences, 43(1):2-24, August 1991.

Huang, J., J. A. Stankovic, K. Ramamritham, and D.
Towsley, “On Using Priority Inheritance in Real-Time
Databases,” Proc. of the 12th IEEE Real-Time System
Symposium, December 199 I .

[lo] Herlihy, M. P., and W. E. Weihl, “Hybrid Concurrency
Control for Abstract Data Types,” ACM Symposium on

u51

1191

I201

1251

Principles of Database Systems, Austin, Texas, March

Kim, W., “Object-Oriented Databases: Definition and
Research Directions,” IEEE Transactions on Knowledge
and Data Engineering, 2(3), September 1990.

Liu, C. L. and 1. W. Layland, “Scheduling Algorithms for
Multi-Programming in a Hard Real-Time Environment,”
Journal ofACM, 20(1), January 1973.

Lee, J., M. J. Lee and S. H. Son, “Scheduling Real-Time
Transactions in Object-Oriented Databases,” Technical
Report, Department of Computer Science, University of
Virginia, April 1994.

Lortz, V . B., I. P. Mangiavacchi, and K. G. Ship, “An
Object-Oriented Approach to Integrating Real-Time
Manufacturing Systems,” TechnicaE Report, Dept. of
Electrical Engineering and Computer Science, Univ. of
Michigan, 1993.

Lee, J . , and S. H. Son, “Semantic-Based Concurrency
Control for Object-Oriented Database Systems Supporting
Real-Time Applications,” Proc. of the 6th Euromicro
Workshop on Real-Time Systems, June 1994.

Malta, C., J. Martinez, “Automating Fine Concurrency
Control in Object-Oriented Databases,” Proc. of the 9th
Int. Con$ on Data Engineering, Vienna, Austria, April
1993.

Moss, J. E. B., Nested Transactions: An Approach to
Reliable Distributed Computing, MIT Press, Cambridge,
Massachusetts, 1985.

Muth, P., T. C. Rakow, G. Weikum, P. Brossler, C . Hasse,
“Semantic Concurrency Control in Object-Oriented
Database Systems,’’ Proc. of the 9th Int. Con8 on Data
Engineering, Vienna, Austria, April 19-23, 1993.

Ramamritham, K., “Real-Time Databases,” International
Journal of Distributed and Parallel Databases, Vol. 1, No.
I , 1992.

Rakow, T. C., J. Gu, E. J. Neuhold, “Serializability in
Object-Oriented Database Systems,” Proc. of the 6th
International Conference on Data Engineering, April
1990.

Special Issue on Real-Time Database Systems, ACM
SIGMOD Record, March 1988.

Son, S. H., “Real-Time Database Systems: A New
Challenge,” Data Engineering, 13(4): 51-57, Dec. 1990.

Schwartz, P. M., and A. Z. Spector, “Synchronizing Shared
Abstract Types.” ACM Transactions on Computer
Systems, 2(3):223-250, 1984.

Weihl, W., “Commutativity-Based Concurrency Control
for Abstract Data Types,” IEEE Transactions on
Computers, 37(12): 1488-1505, December 1988.

Weihl, W., “Local Atomicity Properties: Modular
Concurrency Control for Abstract Data Types,” ACM
Transactions on Programming hnguages and Systems,
1 1(2):249-282, April 1989.

Yu, P. S., K.-L. Wu, K.-J. Lin, and S . H. Son, “On Real-
Time Databases: Concurrency Control and Scheduling,”
Proceedings of the IEEE. 82(1):140-157, January 1994.

1988, pp. 201 -210.

140

